

HIV Vaccines: The Basics

May 2018

Presentation Overview

- What is a vaccine?
- How would an HIV vaccine work?
- Where are we in the search?
- What is needed now?

What is a Vaccine?

- A substance that teaches the body how to recognize and protect itself against a disease-causing agent, e.g. a virus or bacterium
- No effective HIV vaccine available today
- HIV vaccines <u>cannot</u> cause HIV
- Most licensed vaccines against other diseases are 70–99% effective

Why a Vaccine Cannot Cause HIV

- The whole virus killed or weakened is not used in experimental HIV vaccines
- Vaccine components resemble the virus and cause immune responses, but they are NOT the actual virus
- Only safe, synthetic pieces of the HIV virus are used in vaccine research

Why the Interest in Vaccines?

2016

Measles

183,796

EPIDEMICS SUCCESSFULLY COMBATED WITH VACCINES (CASES 1980 – 2016)

1980 Polio 400,000

2016 Polio 37

Data from the World Health Organization, estimated cases

Vaccine Research in History

TIME TO DEVELOP A VACCINE

Duration between discovery of microbiologic cause of selected infectious diseases and development of a vaccine

Vaccines are Essential

- To end the epidemic, an HIV vaccine is needed
- Proven prevention options have slowed HIV's spread
 but thousands of people continue to get infected daily
- There is a need for a range of HIV prevention methods; there is no silver bullet
- Vaccines are one of the world's most effective public health tools
- Cost-effective single or several doses can provide protection for years

Types of HIV Vaccines

Preventive vaccines

- Designed for people who are <u>NOT</u> infected with HIV
- If effective, would reduce risk of infection
- May also reduce viral load set point after infection
- Therapeutic vaccines
 - Designed for people who <u>ARE</u> living with HIV
 - If effective, would train the body's immune system to help control HIV in the body

How Do Preventive Vaccines Work?

By teaching the body to recognize and fight a pathogen

- Vaccine carries something that 'looks and feels' like the pathogen
- The body reacts by activating the immune system and creating antibodies or killer cells and a memory response
- Upon exposure to the actual pathogen, antibodies and killer cells are waiting to respond and attack

Note: This is general definition, not specific to HIV vaccines

How Might an HIV Vaccine Work?

A preventive vaccine would teach the body to recognize and fight HIV, should it be exposed

- Vaccine would carry a component that 'looks and feels' like HIV, but is *not HIV and cannot cause HIV infection*
- Vaccine components are copied pieces of the virus known to generate an immune response
- Body would react by creating antibodies and/or killer cells and a memory response
- Upon exposure to HIV, antibodies and killer cells would be waiting to prevent and/or control infection

Preventive HIV vaccines are designed to elicit two arms of the immune system – **humoral** and cellular

(1) Humoral immunity

- Primary action of humoral arm is creating antibodies: Y-shaped proteins produced by B cells in response to a pathogen to prevent infection
- Antibodies have multiple functions: attaching to and helping destroy pathogens, keeping the pathogens from entering host cells (neutralization), and calling other cells into action (sensitization).

Immune Responses

Preventive HIV vaccines are designed to elicit two arms of the immune system – humoral and **cellular**

(2) Cellular immunity

- Two types of T cells:
 Cytotoxic T lymphocytes
 (CTL) and T-helper cells
- T cells recognize HIV-infected cells, coordinate the immune response (helper cells) and kill the infected cells (CTLs)

WHITE BLOOD CELL or CTL (cytotoxic T lymphocyte)

Preventing vs. Controlling Infection

Solid line – viral load in natural HIV infection Dotted line – potential changes due to vaccination

How Are Vaccines Typically Made?

 Live attenuated vaccines (examples: Sabin polio vaccine, measles, mumps, and rubella)

 Whole killed virus vaccines (example: influenza, rabies and Salk polio vaccine)

Courtesy of HIV Vaccine Trials Network

Note: This is general vaccine development, not specific to HIV vaccines.

Developing an HIV Vaccine is Difficult

- Numerous modes of transmission
- HIV kills the very immune cells the body uses to defend against disease
- HIV makes many copies of itself and mutates, making itself unrecognizable to the immune system
- Mutation leads to different subtypes of the virus throughout the world
- Nobody has ever eliminated HIV with their own immune system

How Are HIV Vaccines Made?

Examples of recombinant vaccines:

- DNA vaccines
- Vector vaccines (viral and bacterial)
- Subunit vaccines
- Do not contain HIV only synthetic copies of fragments of HIV that will create an immune response but cannot cause HIV infection

HIV Vaccine Efficacy Results to Date

YEAR	TRIAL NAME/ PRODUCT/CLADE	LOCATION	#	RESULT
2003	VAX003 AIDSVAX B/B	Canada, Netherlands, Puerto Rico, US	5,417	No effect
2003	VAX004 AIDSVAX B/E	Thailand	2,546	No effect
2007	STEP MRK-Ad5 B	Australia, Brazil, Canada, Dominican Republic, Haiti, Jamaica, Peru, Puerto Rico, US	3,000	Immunizations halted early for futility; subsequent data analysis found potential for increased risk of HIV infection among Ad5-seropositive, uncircumcised men.
2007	Phambili MRK-Ad5 B	South Africa	801	Immunizations halted based on STEP trial result.
2009	Thai Prime- Boost/RV 144 ALVAC-HIV (vCP1521) and AIDSVAX B/E	Thailand	16,402	Modest efficacy (31.2%)
2013	HVTN 505 DNA and Ad5 A/B/C	US	2,500	Immunizations halted early for futility; vaccine regimen did not prevent HIV infection nor reduce viral load among vaccine recipients who became infected with HIV; follow-up continues.

Efficacy Trials Pipeline

2014 2017 2018 2019 2015 2016 Development HVTN702 Track RV144 Estimated completion July 2021 HVTN 097 HVTN 100 South Africa 31% efficac Designed to lead to a product submitted for regulatory approval and eventual public Phase Ib Phase VII ALVAC/AIDSVAX ALVAC/gp120 health introduction. ALVAC/AIDSVAX Clade B, A/E Thailand Phase IIb/III Clade B/E Clade C ALVAC/gp120 Clade C Pox-Protein P5, GSK, Sanofi Phase I and **Research Track** Pasteur VIIa prime-boost **HVTN 108** Focus: Southern Africa candidates with **HVTN 120** and US varying vectors, primes, boosts and adjuvants **HVTN 107** Designed to identify HVTN 111 components of an effective vaccine strategy. Clade C Phase I MVA Mosaic boost V-A002/ USA MENSEL HPX2004/ HVTN1117/ TRAVERSE Phase I and V HPX2008/ II Ad26 mosaic, Pháse I HPX2003/ HVTN118/ ASCENT Ad26 HVTN 705 Estimated gp140 + adjuvant (HIV-V-A003 claded or Janssen USA mosaic gp140 completion Kenya, Rwanida, 2022 HPX1002 ÚSÁ Phase VII Ad26.Mos.HIV + Ad26, MVA or gp140 boost Rwanda, South Africa, The South Africa, Phase IIb Ad26.Mos4.HIV + gp140 South Africa, Zambia, Zimba bwe, Malawi, Thailand, Uganda, USA Mazam bique PrEPvacc EST 2018-2022 PrEPvacc Neber, Imperial lege, MRC-ure, IAV Phase IIb DNA+Piptein or DNA+MVA with PrEP

VACCINE EFFICACY TRIALS PIPELINE

Available to download at <u>www.avac.org/infographics</u>.

Pox-Protein Strategies

- In 2009 a trial in Thailand ('RV144') showed that a vaccine <u>can</u> reduce HIV risk
 - Moderately effective 31% protection
 - Not good enough to license what's next?
- The Pox-Protein Public Private Partnership (P5) formed to determine and implement next steps
- Next steps include:
 - Several small-scale clinical trials in southern Africa, started January 2015 and ongoing
 - A large-scale trial (HVTN 702, or the Uhambo Study) launched in October 2016, using a similar regimen to RV144, but made for South Africa; the trial is ongoing

Mosaic Vaccine Strategies

- A mosaic vaccine is designed to help the body recognize many clades or strains of HIV
- Several mosaic candidates have been developed
- Phase I/II clinical trials are ongoing

 HPX2008/HVTN 705 (The Imbokodo Study): Phase Ilb proof of concept efficacy trial testing a mosaic candidate, delivered using an adenovirus type 26 vector, began in November 2017

Antibody Research

- Direct transfer of antibodies (passive immunization) being tested for prevention, treatment, and as part of cure
 - Multiple bNAbs tested in early clinical trials: <u>www.bnaber.org</u>
 - Many show safety, tolerability, viral reduction among HIVpositive participants
 - First proof-of-concept studies of bNAb VRC01 for prevention, the AMP studies, initiated in 2016: <u>www.ampstudy.org</u> & <u>www.ampstudy.org.za</u>
 - Researchers identifying and developing more powerful antibodies, and easier ways of delivering them
- Early phase studies are also testing combination bNAb approaches

Antibody Research

- Numerous broadly neutralizing antibodies (bNAbs) discovered since 2009
- Five main targets of bNAbs on the virus envelope
- Studies have shown bNAbs can neutralize many different types of HIV
- bNAb research may provide insights into vaccine development and/or could be the basis for a prevention strategy on its own

HIV-SPECIFIC NEUTRALIZING ANTIBODIES: Targets and research status

Structure of HIV

uiv	Antibody	Status				
envelope target		Pre- clinical	Phase I	Phase II	Phase IIb/III	
CD4 binding site	3BNC117		٦٢			
	VRC01		۲		۲	
	VRC07-523		٦٢			
	NG		٦٢			
gp41 membrane	10e8		<u> </u>			
region (MPER)	4e10	٦٢				
gp120-41	8ANC195	٦٢				
interface	PGT151	٦٢				
	CAP256-VRC26		<u> </u>			
V1/V2-glycan	PGDM1400		<u> </u>			
	PG9		۲			
	CH01	ግና				
	PGT121		ግ			
V2 alveon	PGT128	ኘ				
v3-giycan	PGT135	ነ				
	10-1074		<u> </u>			
	3BNC117+ 10-1074		۲			
CD4 binding / V3-glycan	CAP256-VRC26 +PGT121			٦٢		
	CAP256-VRC26 + VRC07		٦٢			

Advocates' Checklist

- Emphasize that sustained control and the eventual end of the HIV epidemic will depend on methods that provide long-lasting protection, including a vaccine
- Promote continued investment to sustain momentum in HIV vaccine research
- Ensure vaccine trials are well-conducted, conform to Good Participatory Practices, and react quickly to the changing realities of the HIV response
- Demand that stakeholders have a role in planning with researchers for outcomes and next steps from ongoing vaccine trials
- Support global partnerships to ensure researchers work together to manage the pipeline of vaccine and antibody candidates

Key Resources

- AVAC: www.avac.org/vaccines
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID)
 - At Duke: <u>www.chavi-id-duke.org</u>
 - At Scripps: <u>www.cavi-id.org</u>
- Collaboration for AIDS Vaccine Discovery: <u>www.cavd.org</u>
- European AIDS Vaccine Initiative (EAVI 2020): <u>www.eavi2020.eu</u>
- European HIV Vaccine Alliance (EHVA): <u>www.ehv-a.eu</u>
- Global HIV Vaccine Enterprise: <u>www.vaccineenterprise.org</u>
- HIV Px R&D Database (PxRD): <u>www.data.avac.org</u>
- HIV Vaccines & Microbicides Resource Tracking Working Group: <u>www.hivresourcetracking.org</u>
- HIV Vaccine Trials Network (HVTN): <u>www.hvtn.org</u>
- International AIDS Vaccine Initiative (IAVI): <u>www.iavi.org</u>
- NIAID: <u>www.niaid.nih.gov/topics/hivaids/research/vaccines/Pages/default.aspx</u>
- NIH Vaccine Research Center (VRC): <u>www.vrc.nih.gov</u>
- Pox-Protein Public-Private Partnership (P5): <u>www.hivresearch.org/media/pnc/9/media.749.pdf</u>
- US Military HIV Research Program (MHRP): <u>www.hivresearch.org</u>
- Vaccine Advocacy Resource Group (VARG): <u>http://www.avac.org/blog/introducing-varg</u>

Connect with AVAC

- Questions, comments and requests for materials should be sent to <u>avac@avac.org</u>
- Information about HIV prevention generally at <u>www.avac.org</u> and vaccines specifically at <u>www.avac.org/prevention-option/hiv-vaccine</u>
- For the latest news and updates, sign up for our Advocates' Network mailing list at <u>www.avac.org/signup</u> or follow us on Facebook at <u>www.facebook.com/hivpxresearch</u> and on Twitter at <u>www.twitter.com/hivpxresearch</u>